
Colorization GUI

The colorization process uses an open source implementation of the algorithm that was proposed by
Anat Levin, Dani Lischinski and Yair Weiss at the School of Computer Science and Engineering,
the Hebrew University of Jerusalem. (see http://www.cs.huji.ac.il/~yweiss/Colorization/)

By scribbling (marking) areas with different colors, the algorithm calculates the color for the
complete image. Marked areas are turned into the given color.

The colorization process will apply colors to neighbor pixels of the marked areas. The color at the
neighbor pixels is similar, if the brightness of that pixels are similar. Between marked areas, the
color is fading automatically using a weighting function. If the edge between areas is soft, the color
change is also soft.

The colorize GUI simplifies the process of adding color to gray images. Where other (much more
advanced graphics editor) can do the same, this GUI provides some important features that make
things allot easier:

• Marked pixels are not anti-aliased, which is required for the algorithm to work correctly.
• The marked pixels are stored in a separate file, keeping the original image untouched.
• The marked pixels are stored as indexed byte map with palette, so colors can be changed

without redrawing marked areas.
• Current selected color can be highlighted (red) for better view on an image with similar

brightness.
• A colorize button is used to render the result without using the command line tool.
• Color images can be recolored. Areas can be marked without changing the color, changing

the color or removing the color.
• The GUI can handle image sequences and provides a time line with key-frames and marked

images.

http://www.cs.huji.ac.il/~yweiss/Colorization/

Still image

To colorize a gray image, areas need to be marked with target color. The colorization algorithm then
fills the marked areas with this color and blends them on the edges between areas. As you can see at
the edge of the hair and the skin, the color is blended with the change in brightness of the gray
image.

To get started, run colorize_gtk and open a file select “File → Open” from the menu and then select
“example.ppm” from “examples” directory of source archive. The GUI will also load
“example.ppm_marked” file and the “example.ppm_palette” file, if exist.

To colorize the displayed image, click on at the toolbar. After some seconds, a window with
the colorized result will open. From that window the result can be saved.

To mark the image with a color, select the color from the palette (left of the window). If you like to
change the color or define a new one, double-click on the name and enter it's name and click on

 at the toolbar to change it's color. Note that the value of the color is not important, because it is
taken from the gray image during colorization process. The fading bars at the palette will show the
colorization result of the color at different gray level.

Now select your desired mark pen size by selecting tool at the toolbar. If you use left mouse
button, it will draw, if you use right mouse button it will erase areas. Click on the image to mark,
select “Edit → Undo” from the menu, to revert the line you just drew. Note that the gray image is
not touched, so scribbling will not alter it. An extra mark file “example.ppm_marked” stored all
marked lines. You may erase all marked colors or only the selected color at the “Edit” menu. The
gray image will show up without the marked lines that has been removed.

In order to view only the selected color, click on at the toolbar. The selected color will be
shown in red, all other color in blue. Click again and the color are shown again.

This is quite helpful if the marked color has only little hue, and so it might look similar to the gray
image in the background.

Film Sequence

Select “File → Open” from the menu and then select “taxi00.ppm” from “examples/taxi” directory
of source archive. You will see a time-line below the image:

When open one image of a sequence, other images are automatically detected and displayed in a
time-line. The bright bar in the time-line is the current selected image. Blue bars indicate that there
are marked pixels. The red triangles indicate key frames. In this example all marked images are
key-frames too.

Click on the time-line to change selected image or use cursor keys (left / right) and “Home” / “End”
keys to change selected image. To jump directly to marked images, use SHIFT + cursor keys.

Whenever you change the current image, marked pixels are saved automatically to an extra file.
(e.g. taxi00.ppm_marked). If all marked pixels are erased, the extra file would be removed.

To set or unset key-frames, select a frame and press CTRL+K or select “Edit → Keyframe” from
the menu. Information about all set key-frames is store in an extra file “sequence”.

All images of a sequence share the same palette. The palette information is stored in an extra file
“palette”.

When marking several frames, it can be faster to copy and paste marked color or all colors from one
frame to another. In this example only three cars move, so only minor change must be done. In
order to copy one or all colors from one frame to another, select “Edit → Copy” or “Edit → Copy
All” from menu, select target frame from the time-line and select “Edit → Paste”. If there are
already marked pixels, select “Edit → Clear” first to remove them before paste.

Now you can manually correct the marked pixels on the cars using the erase tool and the draw
tool from the toolbar.

Key-frames and Rendering

Key-frame help to reduce the number of frame that are colorized at a time. Rendering complete film
sequences would consume too much memory, especially with higher resolution than our “Hamburg
Taxi Sequence” example. When using key-frames, only the sequences between key-frames
(including the key-frames itself) are colorized at a time. It makes sense that the key-frames are also
marked frames, so the colorization algorithm has at least two marked frames. On fast moving
objects it makes sense to add additional marked frames that help the colorization algorithm to
follow these objects. These additional marked frames must mark the complete scene, only the
moving objects and the area around them is required. In our example, cars are moving slow, so there
are no additional marked frames required.

In order to render a sequence, enter the directory where the images, the marked images, the
sequence and the palette is stored. In our example, use a shell and enter the directory
“examples/taxi/” of the source archive. Now enter “colorize sequence list”:

$ colorize sequence list
Got 11 frames from sequence (frames 0..10)
Got 10 frames from sequence (frames 10..19)
Got 11 frames from sequence (frames 19..29)
Got 12 frames from sequence (frames 29..40)
$

As you can see, all sequences between key-frames (including the key-frames itself) are only 10-12
frames, so the colorization algorithm only needs to render these number of frames at a time. To
render the sequence enter “colorize sequence”:

$ colorize sequence
Got 11 frames from sequence (frames 0..10)
 11 frames, please wait...
Elapsed time: 1 minutes, 38 seconds
Got 10 frames from sequence (frames 10..19)
Colorizing 10 frames, please wait...
Elapsed time: 1 minutes, 29 seconds
Got 11 frames from sequence (frames 19..29)
Colorizing 11 frames, please wait...
Elapsed time: 1 minutes, 40 seconds
Got 12 frames from sequence (frames 29..40)
Colorizing 12 frames, please wait...
Elapsed time: 1 minutes, 47 seconds
$

Now each gray frame (“taxi00.ppm”, “taxi01.ppm”, …) is rendered and stored in a color frame
(“colorized_taxi00.ppm”, “colorized_taxi01.ppm”, …). Click on at the toolbar to see the
colorized frames. You can now scroll through the time-line and verify the results.

Changing or removing color

The same process for colorization can be used to change color. In order to change a color, areas are
marked with a new color. To keep original color around these areas, they have to be marked with
white color where all components need to have a value of 255.

In order to turn areas from color into gray, they can be marked with any gray color except white.

YUV space and levels

Most colorization software is using YUV space. The component Y (lightness) is taken from gray
image and UV color vector is rendered during the colorization process. After colorization, the YUV
space is converted to RGB and then displayed or stored.

Select “Edit → Adjust levels” from menu to change the YUV ↔ RGB conversion process.

Black Level:

Most images and film sequences have black levels above 0. If some part of the image shows
something completely black or dark, it does not mean that the pixel level is also 0. If the black level
would be lower than the actual black parts of the image, the colorization would also apply color to
black, which causes a “chocolate effect”, that is known from old colorizes post cards.

Black Level at 0 Black Level at 50

To find out the actual black level, use the palette's pick tool and hold down left mouse button while
sliding over black parts of the image. Watch the RGB values at the palette window. Use the lowest
level as black level.

White Level:

Similar to the black level, the white parts of the image do not necessarily have a brightest pixel
value of 255. When the picture gets overexposed, the maximum brightness is reached. Using a
value that is higher will cause overexposed parts to be colorized, which causes unnatural effects like
“blue clouds”.

White Level at 255 White Level at 240

Find the white level using the pick tool as described above. Use the slider to select the brightness of

overexposed image parts.

Scale Level:

Normally the original black and white levels are preserved after colorization. If this box is checked,
the range between back and white levels is scaled to full range from 0 to 255. Use this button only
for testing, use an image processing software to correct black and white levels after colorization.

Fade Level and Use modified YUV:

The original UV vector length is affected by saturation (more color) and brightness (more light).
Darker regions of an image have lower UV vector length than brighter regions of the same color
and saturation. Most colorization software do not alter UV vector length on different gray levels of
the original image. The result is high saturation on dark regions (similar to “chocolate effect”) and
low saturation on bright regions. A better approach is to use an UV vector that only represents color
and saturation. The result is a constant saturation on all gray levels of the original object. If regions
of the image are overexposed, the saturation is only reduced as required to prevent false colors.

Regular YUV model (Black Level 33) Modified YUV model (Black Level 33)

Use the “Fade Level” slider to reduce the high saturation on dark pixels, or enable the “Use
modified YUV” box to change to a modified YUV space. The “Fade Level” slider becomes obsolete
in this case.

